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SUMMARY 

In this paper we consider Vlasov's equation with an exterior magnetic field. By using the mollification of the 
Coulomb potential introduced by Batt, classical solutions are established. 
Furthermore, we study the effect of the exterior magnetic field on the solution. Choosing axially symmetric 
initial conditions we obtain solutions describing the confinement of an electron gas in a cylinder of infinite 
axial extent. 

1. Statement of the problem 

Let a system of  charged particles move under the influence of  an exterior magnetic force and of 

Coulomb forces generated by the particles themselves. We describe the system by a distribution 

function)"depending on the t ime,  t,  and on the location (x,v) in the phase space. At a particular 

time t an observer sees the quantity fvf(t,x,v)dxdv of particles in the volume Vin the phase space. 

If collisions between the particles are excluded the distribution f remains  constant along the path 

of  a particle in the phase space. This is the content of  Vlasov's equation (or collisionless Boltzmann 

equation). 

Now we consider a gas of  electrons and in particular a gas column of  infinite axial extent.  We 

ask whether the column can be stabilised by a constant magnetic field parallel to the column 

axis. By means of  linear perturbat ion analysis applied to Vlasov's equation this problem was 

treated in [ 1 ], for example. We use a cut-off condition for the Coulomb potential and deal with 

the full equation. 

We shall treat the gas column in the following way. To a solution of  Vlasov's equation we assign 

at each time the mean distance rM(t ) of an electron from the axis. By using flow-invariance 

methods we show that there are solutions such that rM(t ) has an upper bound independent of  

the time t. It turns out that a certain amount  of  the magnetic field strength is sufficient to assure 

the bound.  

Denote by f:  I x ~R 3 X ~ 3  ._~ ~ the distribution function (I is  an arbitrary time in terval,lR 3 x IR 3 

is the phase space). With an arbitrary exterior magnetic field B Vlasov's equation takes form: 

f t+vVxf_ - e_rn (Ef+ L ~ _ )  ~vf=O. (1) 

* Supported by Forschungsf6rderung des Landes Nordrhein-Westfalen. 
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356 W. Strampp 

(c is the speed of  light, - e  the charge and m the mass of the electrons). In equation (1) the force, 

(El) (t,x) = - V  x (PC) (t,x), 

is the gradient of  the Coulomb potential, 

(Pl) (t,x) = 41re f ~  
p f ( tY )  
I I x - x ' l l  dx', 

which is produced by the local density of the gas, 

pf(t,x)= f 3 f(t,x,v)dv. 

In [2] the existence of weak solutions of (1) is established. For the purpose of this paper we 
need differentiable solutions. Thus we introduce into equation (1) the smoothed density 

Pf(t~c) = f 3  eo~ (x - x') pf ( tY )dx ' ,  

using the mollifier 

~ ( x )  = 8 - 3 ~ ,  

~ , ( x )  = 

t c e x p  ( 

/°, 
IIxlI2 ) 

1 ~ ~11 = , Ilxll ~ 1 

Ilxll > 1 

(,isar  trary  ; exp( 
7 = Ilxll < 1 1 - -~11  = " 

In an equivalent way the mollification may be interpreted as follows: since a short calculation 
yields 

f *,,at,,,') f 
IR ~ IIx - x ' l l  dx' = 47re a(llx - x'll)pf(t,x')dx' 

where 

1 r > 8  
r 

o ( r )  = 

4rr c%(r')r'2dr ' + ~8(r')r'dr' , 
I 

r < f i  
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Vlasov's equation with mollified density 357 

we can say that we insert instead of  the potential (Pf) the cut-off potential 

(Pf) (t,x) = 4he f 3  o(llx - x'll)pf(t,x')dx' (2) 

into Vlasov's equation. 

Thus, we consider the mollified equation: 

- -  + v v f - -  0 ,  
m c 

(EJ3 (t,x) = - V x ( e / 3  (t,x), 

and we prescribe an initial distribution 

f (o~,o  =fo(x,v). 

In [3], [5], [6] and [7] the existence of  solutions of the mollified equation without exterior 

magnetic field was proved. 
In the first part of  this paper (Sections 2 and 5) we state the existence of  solutions of  (3) and 

I 

the conservation of  the total energy of  the system. Then we show that the solutions are axisym- 

metric if the data are axisymmetric and formulate the conservation of  the canonical angular 

momentum in case of  a constant magnetic field B parallel to the x3 -axis. 

In the second part (Sections 6 and 7) we assume axisymmetry. By means of  the conservation 

principles and a lemma concerning flow invariance proved in Section 6 we shall estimate the 

mean distance of  an electron from the x3 -axis, rM(t ) = flR3 (X21 + X~) 1/2 py(t,x)dx. The result 

can be stated thus: if the initial distribution fo is chosen suitably then rM(t ) has an upper bound. 

Theorem 3 assures that the bound depends only on the data fo and B while the length of  the 

time interval does not enter into the bound. 

Finally, we remark that the method used in the second part could be applied also to the non- 

mollified equation if it were possible to find differentiable solutions with bounded density. 

Such solutions are given for the non-mollified equation without exterior force and with gravita- 

tional instead of  Coulomb forces in [4] in case of  spherically symmetric initial distributions. 

2. Two lemmas 

We introduce the notations: 

Ilxll = ( 2  Ixil2) 1/2, 

x 

and JilL 1 (~n) = 

Ixl = max Ix/I, x E ~n  

for bounded functions f:  ~n  ~ IR m 

f [f(x)ldx for functionsfELl(IRn). 
IR n 
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358 W. Strampp 

From [9, p. 181] we have the following lemma concerning mollified functions: 

Lemma 1 

LetgELl(lR3). Then there holdsfor g(x)= f~ co~(x - x')g(x')dx': 

a) {g[o ~61  Iglz](lR3 ), 6] =6-31601]0, 

IVg]o <_ 6 -4 IVcol Io Igl L1 (~3);  

b) 
I~L, ( ~ 3 ) ~  IglL, (IR3)' 

Due to the mollification we obtain suitable bounds for the cut-off potential 

f g(x') dx' and its first and second derivatives. 
(ffg)(x)= n~ I lx-x ' l l  

Lemma 2 

f g-Ix') ax': LetgELl(lR3)'Thenthereh°ldsf°r('Pg)(x)= ~ I Ix-x ' l l  

a) I)Yglo <_62 IglLl(lRS ), 62 = 1 + 27r 6 -3 16ol ]o; 

aPg < 63 lgl L 1 )' b) ~ o -  (JR 3 
6 3 = 1 +47r6  -3 160110; 

a2P'g o IglL1 (IR3)' 47r -4 e) ~ <64 6a = ~-- +4 + 13 IVcol 1o 6 

Proof." (a) results from Lemma 1 and 

f Ig(x')ldx'+ ~ IIx' xtl-' Ig(x')ldx' IJ~g(x)l ~ IIx' xi l>l  ttx-x'tl<l 

<_ Igl L, (IR3) + Iglo " 27r. 

Similarly, (b) follows from 

OX i IR' I lx'  --X]] 3 

By [8, p. 86] we have for k 4:/': 
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Vlasov's equation with mollified density 359 

~2~(X) - f (g(x')--ff(X)) 3(Xk - - X k ) ( X ; - - X i )  
OXkOX i llx'--x II<l [ I x '  - xl l  s 

dx' 

f ~ t [Ix' >1 g(x') 3(Xk -- Xk ) (Xi - x i )  
- IIx' - x l l  s dx'. 

Therefore, in the case k v~ i we obtain (c) from: 

o2Fg(x) F 
< 3V~ IV~o J it~' - x l t - ~  dx  ' 

~Xk~X i -- I Ix ' -x  ll<_] 

+ 3  , f 
tlx - x N > ]  

Using the corresponding formula for the second derivatives of  Pg in the case k = i [8, p. 86] we 
can complete the proof  of  (c). 

3. The solution method 

In order to solve (3) we introduce the Banach space 

C' = {f: 1 -+ L 1 (F ) t f  continuous }; P = N3 x N3 

endowed with the norm 

If]'= tsuPI If(t")lLl(I')' 

(see [7]). I = [0,a], a > 0 is an arbitrary time interval. 

For e a c h f E  C' and t C l  the components (ff4oi(t, .) of  the force have continuous derivatives with 
respect to x. Lemmas 2b and 2c imply that f f together  with its spatial derivatives is continuous 

o n l x  F. 

Now assume that f0 ~ C 1 (I ' )  C~ L 1 (p) and B E C 1 (IR 3 ), [B Io < ~ .  For all f E  G, 

G={fEC'IIfI'<--IJOIL~(F) t ,  

we have by Lemma 2c 

t O = C1. (~f)i  ( t , ' ) l  <47re fi4 [fo JLl( r  ) (4)  
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Thus, the right-hand side of the characteristic system 

dx  dv e t ,x)  + f E G  (5) 
dt  - u, d t  - m c ' 

increases at most linearly with [(x,v)[. Therefore the solutions of (5), the phase maps 

Lf ( t , r , x , v )  = (Xf( t , rpc ,v) ,  Vf( t ,rpc,v)) ,  

L{ (r , r , x ,v )  = (x ,v) ,  

exist and are continuously differentiable in I x I x P. 

From the theory of partial differential equations of  the first order we know that ~(t ,x ,v)  = 

fo(Lf(O, t ,x ,v) )  satisfies the equation 

e ( ~ f +  v x B  i VvT=0.  
m \ ] c  

Hence, each fixed point of  the operator 

(Tf)  ( t ,x ,v)  = fo(Lf (O, t ,x ,v ) ) ,  f E a 

is a solution of (3). 

Since the right-hand side of  (5) is divergenceless the phase maps are measure-preserving, see [ 1 O, 

p. 96]. We have thus 

T G C G .  

4. An existence theorem for (3) 

The assumption of  [3], [5] and [6] about the initial distribution f0 which assert that the operator 
T contracts if we have no exterior magnetic field are still sufficient for a constant exterior magnetic 

field B. For non-constant B we need stronger assumptions since the directional field in (5)has no 

longer bounded derivatives with respect to x. 

Thus we assume: 

a) B E CI(IR "3 ,IR3), B and V B  i are bounded 

fo E c ' ( r ) ,  fo >_O(fo ~ o); 

b) for all (x,v)  E F we have: 

(V) I fo(x,v)  - fo(x ' ,v ' ) l  < U(x ,v ) l (x ,v )  - (x 'Y) l  
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I/Tasov's equation with mollified density 

for all ( x ' y )  with I (x,v) - (x',v')l <__ 1; 

c) vZfo(x,v) C L l (1") and U E L 1 (V) 

if B is constant, 

exp(v 2 )fo(x,v) E L l (Y) and exp(v 2) U (x,v) E L 1 (F) 

i fB is non-constant. 

361 

We state the existence of  solutions of  Vlasov's equation in 

Theorem 1 

If  the conditions (V) are satisfied there is exactly one solution f E  C'(P) (~ C1(I x I ' )  of  Vlasov's 

equation (3) and the law of conservation of energy holds: 

d [ :  v 2 f(t~c,v)dxdv e :(fi f)(t~c)f(t~c,v)dxdv] O. d t  m - = 

Proof" By Lemma 2b we have f o r f E  G: 

I (El); (t,')lo ~ 47re 83 f(t,')lza (F)" 

Thus, we obtain from the equations (5) • = -~- " 

3 

112~(t,~,x,v)l< e e ~( - - c 2 + - -  IBIo ~ I V  t , r , x ,v )  l 
- -  m m c  i =  1 

c2 :=4rre631JOlLl(F ), 

and by Gronwall 's lemma: 

3 ( 3  
z i iS=l 

i = 1 

I Vil + c3) exp (e4 It - rl) 

e e 
c3 :=6ac2  - - ,  c4 :=3 LBI. 

m m e  

(6) 

(7) 

Since it follows by (4), (6) and (7): 

II )if, (t,r,x,v) - I )i[~ (t,r,x,v) E <_ me 4rre 63 If1 ( t , ' )  - fz( t , ' )  [L a (~ ) 
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3 e 
+ -- C, ~ IX~I(t,7",X,p ) --X~2(t,T,X,V) I 

m i=1 

+ 2  mce ( ~i= 1 [Vii+C3)exp(c4"2a) 

3 
max IVBilo Z 

1<1<3 i=1 
[Xi L (t,r~x,v) X i (t,~-~c,v) l Y~ 

3 
e i V i (t3-,x,v)I, + - -  [BIo ~ I Vfl(t,r,X,V)-- f2 m i=1 

we can show similarly that 

3 

,~1"= [xif' (I,T,X,V) -- X if: (t,7,x,v) I+ IVy, (t,T,X,l~) - V if2 (t,T,x,F) I 

with 

t 

_ d t ' [  <Cs  exp (A(v)) ' l  f "  I f l ( t ' , ' )  - f z ( t ' , ' ) IL l ( i . )  
7" 

3 
A(V)=C6 +c7 max IVBilo Z Ivil 

1<i<3 i=1 

(8) 

and constants Cs, c6, c7 independent off1 and f2 E G. Now we introduce the function 

h(v)=exp(1 +v2)  1/2, v E ~ 3 ,  

and claim f o r f E  G: 

h(v) 
h(Vf(O,t,x,v)) <_c8 

where the constant c8 is independent o f f .  To see this we write 

h(v)  ' a Z , ( h ( V i ( r , t ~ , v ) ) ) d r .  
h(V;(O, t ,x ,v))  - exp fo 

Using (5) we find 

~ _  3 
I ln(h(Vf(r,t,x,v)))l< e ~_. 

- -  m i = 1  

Since t < a, (9) follows by (6). 

](fir) i ( r,X f ('c,t,x,v ) ) [ . 

(9) 
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Next,  we show that there is a constant c9 such that for all f~, f2 • G and all t • I 

[fo(Lfl (O,t,X,V)) -fo(Lf: (O,t~c,v)) ILl ( r )  ~ C 9  fOr If, ( t ' , ' )  --f2(t',') ILI ( r )  dt' (10) 

holds. To prove (10) let us choose c~ such that A (v) <_ a ( l  + v 2 )1/2 for all v • IR 3 . ( I f B  is con- 

stant we can set c~ = 0 in the following). For fixed t • I we divide the phase space I" into: 

P~ = {(x,v) • I" II Lf, (O,t,x,v) Lf2 (O,t,x,v) I<_ 1 } 

and 

I"2 = {(x,v) • r II Lf  , (O,t,x,v) - Lf : (O,t,x,v) I>_ 1 }. 

By assumption (V) we have for (x,v) E I'1 " 

I1o (Lf , (0, t,x,v)) - Jo (L f: (O,t,x,v)) I <__ 

_h(v) I ~ ILf(O,tcc,v)-Lf:(O,t ,x ,v) l  
h (Vf, (O,t,x,v))%(Lc, (O,t,x,v)) h (~), (O,t,x,v)) ! h (v) ~ 

Thus, taking (8) and (9) into account we obtain 

f IYo(Lf, (O,t,x,v)) - f o ( L f 2  (O,t,x,v)) I dxdv 
r i 

t 

fh(v)~;t(x'v)dxdVr "c8 '(~ " Cs • f o  l f~ ( t ' , ' )  - f z ( t ' , ' ) IL l ( r )d t '  

( l l )  

f 
since the phase maps are measure-preserving. (The integral J h(v)all(x,v)dxdv exists by as- 

sumption (V)). Similarly, we can show that 
1 

f I]o(O,t~x,v)) - fo(Lf2 (O,t,x,v)) I dxdv (12) 
I" 2 

fr h(v)~f°(x'v)dxdv " c~ . fo' if, (t',.) - f2(t',.) IL~(r ) dt'. < 2  

Then (I  1) and (12) imply (10). 

Let us introduce in C'  the norm 

Ifl*= sup { e x p (  cl°t) lf(t")lLx I ' t o t  (U) 

CIO > m a x  {1,c9 }. 
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This norm is equivalent to the norm [ I' and we obtain from (10): 

exp (--Clot) l(Tfl ) (t,') - (Tf2) (t,') IL l 
(I3 

exp (Clot) - 1 
C 9 " exp (--c lo t) • 13'] f2 I*. 

ClO 

Thus T is a contracting operator: 

] T f l - T f  I*< £29 I f l - f z [ * ,  
- -  CI 0 

and we have shown the first part of Theorem 1. Using (2) we can take the proof of [5] to show 
the conservation of energy since the magnetic field does not contribute to the energy balance. 
(The integral 

f v2f(t,x,v)dxdv= f Vf(t,O,x,v)fo(X,v)dxdv 

exists by (7) and by assumption (V); the integral 

f (-Pf) (t,x) f (t,x,v)dxdv = f (fir) (t,Xr(O,t,x,v))fo(x,v)dxdv 
F F • 

exists by Lemma 2a.) 

5. Axisymmetric solutions of (3) 

We now consider axisymmetric magnetic fields. At first, let us introduce the notations: 

F=(X~ + X ~ )  1/2 U = (1, '~ 2",1/2 
, + Y 2 } , 

S = X l b ' l  + X 2 P  2 , ]" = X l I )  2 --X2111, 

and i f f E  C' and Lf = (Xf, Vf) is the solution of the characteristic equations (5): 

2 u f = ( ( v ) )  2 

: x) v) + v;, + : x) v ) -  x; v) 

Denote by S the group of all rotations D of IR 3 leaving x3 invariant: 

(Dx)a=x3 for a l l x E ~ 3 ,  

Journal o f  Engineering Math., Vol. 13 (1979) 355-375 



Vlasov's equation with mollified density 365 

and by SC the set of all f E  C 1 (F) which are axysymmetric in both of its arguments: 

f(x,v) = f (Dx,Dv)  for all (x,v) E F, D C S. 

In addition to (V)we assume: 

(v~) 
D(B(x)) = B(D(x)) 

2o eSC.  

f o r a l l D ~ S ,  x C R  3, 

Theorem 2 

Suppose the assumptions (V) and (Vs) are satisfied. Then the solution f E  C'(F) (q C 1 ( /x  r )  of 

(3) has axysymmetric densities pf( t ,x)  = Of(t,r~x3) and pf(t,x) =-pt(t,r, x3).  Furthermore, if 
B = (0,0N °) (/3 ° constant) the canonical angular momentum is preserved: 

d-~ m -~c Rf( t 'r 'x 'v)2 = O. 

Proof" F o r f E  C' it is easy to show: 

a) i f f ( t , ' )  E SC for all t E I then Of(t, ')  and -pf(t,') is axisymmetric. 

Suppose we have shown 
b) from pf( t ,x )  = pf(t,r,x3 ) it follows that (Tf) ( t , ' )  ~ SC for all t E I. 
The first part of Theorem 2 is then obtained in the following way. The solution f C C'(P) N 

C1(I x P) of(3)  is the limit of the sequence fn+ 1 = T f  n starting from fo. By (a) and (b) we have 
fn ( t , ' )  C SC for all n. By Lemma 1 : 

Ipc~(t,-) -py(t,.)Io <~ 61 " IOzn(t,') -pz(t,')IL,(IR3 ) 

= a, • I f n ( t , ' ) - f ( t , ' ) l L l ( i , ) .  

Therefore p-f (t,-) is axisymmetric and by Tf= f an d  (a), Of(t , ' )  is axisymmetric too. 
To show (b)we consider first the cut-off potential. Since Of(t, ')is axisymmetric we obtain for 
all D E S: 

f3 -P A t l)x') (fir) (t ,x) = 4rre IIDx' Dxll dx' 

f __ 
= 4he p f ( t Y )  dx'.  

n~ 3 IIx' - Dxl[ 
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Hence, (Pf) ( t,x ) = (-fff) ( t,r,x 3 ) and 

(~f)i ( t ,x)  - - xi b (fir) (t ,r,x3),  i = 1,2. 
r Or 

From (13) it follows: 

D((lzf)  (t ,x )) = (El) (t D x  ), 

and with the symmetry of  B we have: 

D(e x B(x ) )  = Dv ~x B(Dx)  

for all D E S, (x,v) E I'. Therefore, we have 

d DXf(t,~-,x,v) = D Vf( tS ,x ,v ) ,  
dt  

D Vi~t,T,x,v) = - ~ I (~f) {t'DXI(t'~'~ 
a + 
dt m 

o v~.(t,T,x,v) × 8(DXi(t,z~,~)) ] ! 
C 

This implies: 

ox~(t,r,x,.) : x~(t ,~gx,ov),  

D Vi(t,~,x,.) : Vl.(t,~gx,OV). 

Hence, we get by the symmetry of fo  : 

(Tf) (t ,x,v) = (TI) (t39x,Dv). 

14/. Strampp 

03) 

Now, suppose B = (0,0,B°), B ° constant. Using the cylinder symmetry of the Coulomb force 

(I 3) we confirm by differentiating the conservation of the canonical angular momentum.  

6. A lemma concerning flow invariance 

In this section we prepare the estimation of the mean value fm3 r p f ( t , x )dx .  By using flow- 

invariance arguments (see [11 ]) we will prove: 
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Vlasov's equation with mollified density 367 

Lemma 3 

Let c~(t), o(t) E C 1 (1), a(t) >_ 0 for all t E I = [0a]  (or I = [0,oo)) and the following assumptions 

be satisfied: 

a) a c t )  = d ( t ) ,  

a ( t )  = - h ,  ( t )  + h:  ( t ) ,  

with hi ,  h2 E C(/); 

b) there exist constants 0 < d l  ~ d 2 , 0 < d 4  ~ d  3 such that for all t E I :  

e) 

a, c~ (t) <_ hi (t) < d ~ ~ (t), 

d4 ~hz(t)~d3 ; 

with the constants d l ,  d2, ds,  d4 from (b) and further constants c >  0 , ~ ' >  0 we define 
in the (a,o)-plane two ellipses: 

m 

O 2 + d l a  2 2d3a = c, 

0 2 + dzo~ z 2d4~ = ~, 

where we assume that the two ellipses have the same vertex on the positive c~-axis: 

d~ d 3 + ( ( d~ ) 2 -dT ) l l 2 d c - d2 + ( ( d~ ) 2 + ~'~ )112, 

and further that (a(0), o(0)) E G, 

G =  { ( e ~ , o ' ) ~  2, e¢>0_ 

Then we have for all t C I: 

(aCt), o(t)) E G, i.e., 

02~c-d10~ 2 + 2 d 3 a  , 0 ~ 0  / 

0 2 ~ c  -- d2o~ 2 + 2d4~, o < 0 

~(t) < ~ + + y, 

Proof: Denote by aCt) the square of  the distance between the point X(t) = (a(t) ,  o(t)) and G. 

Since X(0) E G we have a(0) = 0. Suppose for some t E I, t > O,a(t) > 0. We want to show that 
this assumption implies 

D a(t)<_L a(t) (14) 
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where D denotes a Dini-derivative (see [ 12, p. 551 ]) and L is a constant independent of  t. Since 
a (0) = 0, we obtain from (14) with a theorem of [12, p. 60] a (t) = 0, as claimed. 

Now, suppose a(t) > 0. Then, there exists a point X = (a,o) contained in 

or in 

e 1 ) = { (a,o) ~ IR 2 
~ > 0  

o > 0  

o 2 = c _  dlc~ 2 + 2d3o~} 

a > 0  

f - t e2)= ( a , o ) E R  2 , 0 .2 = c - d 2  Or2 +2d4o~ 

0 . < 0  

with the property that a(t)= Ilx(t) - - x l l  2 • 

To prove (14) we introduce the function 

b(s) = rl×(t + s) -511 for small s. 

from the definitions o l D _ ,  a(t)  and b(s) the inequality: 

D_a( t )  <_ b'(O) 

follows. This was the framework of the proof  which we have taken from a theorem of[  11, p. 68]. 

Our task in the following is to estimate 

b '(0)  = 2 (X(t) - X) X (t). 

Since d3 >_ 0, e 1) has one vertex contained in {cz >_ 0, c~ > 0 } and since d4 >_ 0, e2) has one vertex 
contained in {c~ >__ 0, 0. < 0}. Thus, the vector X(t) - -X is up to a positive factor equal to the 

outward normal to G at X. 
Now we consider first the case o(t)  >_ O. This implies o>_ 0. Thus, the vector X(t) - X is up to a 

positive factor equal to the vector 

(d, ~- - d3 ,a) 

which is the outward normal to e l )  at the point X. 
1.1) 0 > d l •  a - hi (t). Then the second equality of (a) and the second inequality of  (b) imply: 

(dl~-- d 3 )  o + a 6 (0  <__ o ( d l  a - hi(t))  ~ 0 .  

Thus, we have (X(t) - X) (o, 6(t)) <_ 0 and by (a): 
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b'(0) < 2(×(t) X) (~ - (o,6(t)) 

= 2(X(t ) X) (o(t)  - a,0).  

He nce, 

369 

b'(0) ~ 2[]X(t) - XI[ 2 . 

1.2) 0 < d l ~  h l (t). At first, the second inequality of (b) implies: 

(d,  ~ - d 3 )o Jr o ( - d l  ~ Jr h 2 ( t))  ~ O. 

Thus, we have (X(t) -- X) (o, - alia-+ h2(t)) <_0 and by (a): 

b'(O) < 2 (X(t) - X) (2(t)  - (a, - d, a + h2 (t)) 

= 2 (X(t) - X) (a(t)  - a_ hl (t) + d la) .  

Since, by assumption and by the first inequality of (b) 

0 ~ d l f f  - hi ( t )  < d , a  - d ,a ( t ) ,  

we have: 

b'(0) <_ 2 max { 1, d, } [iX(t) - XI] 2 • 

Now we consider the case o(t)  <_ 0. This implies a-K0.  In this case the vector X(t) - X  is up to 

a positive factor equal to 

(d2 a- - d4 ,a') 

which is the outward normal to e2) at (a,o). Again, we distinguish between two subcases. 

(2.1) 0 > _ d 2 a -  h i ( t ) .  The second inequality o f (b )  implies: 

(d2 a - d4 )o + o(-d2-d + h2 (t)) < O. 

Thus, by (a), 

b'(0) < 2 (X(t) - -X) (f((t) - (o, d2-a + h2(t)) 

= 2 (X(t) - X )  (o(t)  o, - h i ( t )  +d2a).  

Since, by assumption and by the first inequality o f (b ) ,  
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0 < h ~ ( t )  - d ~ - < _ a 2  • ~ ( t )  - a 2 ~ ,  

we have: 

b'(0) <__ 2 max {1 ,d2 } IlX(t) - XI[ 2 • 

2.2) 0 < d2a  - h l (t). Then, the second equality of  (a) and the second inequality of  (b) imply: 

(d2 ~ - d, )o + o O(t) <_ o (d2-d - h, (t)) <_ O. 

Thus, we have by (a): 

b'(0) _<_ 2 (x(t) - ~ )  (~ - (o,~(t)) 

= 2 ( × ( t )  - x )  ( o ( t )  - o- ,o) .  

Hence, 

b'(0) < 2 [IX(t) - X-II 2 • 

Finally, we obtain with a constant L: 

b'(O) <__ L a(t), 

since I1× (t) - x ll 2 = a (t). Thus, (14) and the lemma is shown. 

We remark that Lemma 3 also applies to the differential equation: 

6 t=o ,  

d=hl(t ,~)+h2(t) ,  hi @C(IxlR),h2 EC(1), 

where dl a <__ h 1 (t,~) <__ d2 for all (t,a) E I x F, and d4 ~__ h2 (t) <_ d3 for all t E I. (0 < dl <__ d2, 

0 <( d 4 <__ d 3). If we have a solution (~(t), or(t)) and a(t) >__ 0 for all t then this solution remains 

bounded for all times by Lemma 3. 

7. An estimate for the column radius 

In this section we define appropriate functions a(t) and o(t) and show that the conditions of  
I_emma 3 are satisfied with these functions. The estimate given in Lemma 3 for a(t) will serve 

us to estimate the mean value f~3 r pf(t,x)dx. 

Lemma 4 

Suppose (V) and (Vs) are satisfied, f r  r2 fo(X,V) dxdv < 0% B = (0,0,B °) and B ° constant. 
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Let f E C'(F) f3 C 1 (J x I') be the solution of (3). Then the conditions (a) of Lemma 3 are satis- 

fied with the functions 

~ ( t )  = 

o(t) = 2 

f Rf(t,O,x,v)2fo (x,v)dxdv, 

f Sf(t,O,x,v)fo(x,v)dxdv, 
F 

h , ( t ) =  6o2Rf(t,Opc,v) 2 + - -  ~ )~(t,O,x,v)(ff~f)i(t,Xf(t,O,x,v)) fo(x,v)dxdv, 
m i= 1 

F f (r2 ) h2(t) = 2 -- u2f(t,x,v)dxdv + 26o _ co - f fo(X,v)dxdv, 
r r 

eB ° 
where co - mc 

Proof." The integral a(t) = f r  Rf(t'O'x'v)2 fo (x,v)dxdv exists by assumption onfo and the estimate 

( i exp (e4 t)dt IXf(t,O,x,v) l<lxi l  + ~ Ivil+c3 
- -  / = l  

which follows from (7). By similar arguments the existence of o(t) follows. 

We obtain by differentiating: 

&(t) = 2 

d(t) = 2 

f S;(t,x,v)fo(X,v)dxdv, 
F 

fi Uy(t,O,x,v)2 fo(x,v)dxdv 

f 2 _ 2e ~ X~(t,O,x,v) (ff~f)i (t~Xf(t,O,x,v)fo(x,v)dxdv 
m r i= 1 

- 2  eB°mc fr Jf(t'Oex'v) f°(x'v)dxdv" 

We are justified to differentiate under the integral sign since for all functions under the integrals 

on the right-hand side we have integrable majorants. 

Making use of the conservation of the angular momenttum we obtain 

e B ° f  r f ( w  r2 ) mc Jf(t,O;c,v)fo(x,v)dxdv = 26o r --2 - ]  fo(x,v)dxdv 

and this gives Lemma 4. -- f co2Rf(t,O,x,v)2fo(x,v)dxdv F 
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The following Lemma relies essentially on the symmetry of the Coulomb force. 

Lemma 5 

W. Strampp 

Let the assumptions of Lemma 4 be satisfied. If we set: 

d, = 0o 2 - m e ((4rr)2e 6 , + 64) Ifo ILl ( r ) '  

e 
d2 = 6°2 + - -  ((47r)2e6 l m  + 64) Ifo ILl (p), 

da = 2 f V2fo(X,v)dxdv - 2 e f (fifo)(x,v)fo(x,v)dxdv 
F m F 

+2 e~62 ( l  foiL1 )2 +d4, m (p) 

-- 60m - m/ fo(x,v)dxdv m r --2 

with the constants 61 of Lemma la, 62 of Lemma 2a and 64 of Lemma 2c and if we assume 

dl ~ 0 ,  d4 ~>0, 

then the conditions (b) of I_emma 3 are satisfied, 
(61 Ifo ]LI (p) is a bound for the density -pf(t,x) of the electron gas. The cut-off potential (Pf) (t,x) 

i sboundedby62 (lfolLl(p) )2. 

This follows from Lemma 1 and 2 and furthermore,by I_emma 2,64 [fo ILl(p ) is a bound for 

the second order spatial derivatives of (Pf) (t,x). The further terms appearing in dl to d4 refer 
to the total energy and to the canonical angular momentum of the gas). 

Proof of Lemma 3." By using the symmetry of the force (14) we obtain: 

h i ( t )=  fr I602 rn Rf(t,O,x,v) Or (tJ~f(t,O,x,v),X~(t,O;x,v . 

Rl(t,O,x,v)2 fo(X,v)dxdp. 

Since f f  satisfies Poisson's equation, 
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Ax(Pf) (t,x) = - (4rr) z ep-(t,x), 

and in cylindrical coordinates, 

1 3 3 ~2 
r ~ (Ff) (t,r,~3) + 

Or ?. 

we have by Lemma 1 a and 2c: 

Thus: 

(fif) (t,r,x3) = - (470 2 e-p(t,r,x3), 

1 OFf 
1 7 - ~ -  r I ° _< ~((47r) 2 e6~ +64)[fOlLl(r  ). 

d~a(t) < h~ (t) <_d2a(t). 

With the help of the conservation of the energy and Lemma 2a we have 

f u z f ( t ,x ,v)dxdv < f p2f(t,x,u)dxdp - e f (PJ) ( t~c)f( t ,x ,v)dxdv 
I" -- r m r 

e 
+ n 

m 
f (fff) (t,Xy(t,O;c,v)) fo (x,v)dxdv 

-<- fr v2~°(x'~)dxdv - -~e fr (-£0 (x) fo(x,v)dxd~ 

373 

e 6 2  (Ifo ILl(F) ) 
m 

Thus: 

d4 <h2(t) <__d3. 

Lemma 6 

If the assumptions of Lemma 5 are satisfied then there exist constants 7i, ~ (i = 1,2) such that 
the condition (c) of kemma 3 is satisfied with c l ,  ~1 if o(0) _>_ 0 and with c2, ~'2 if o(0) < O. 

Proof: If a(0) > 0 we introduce the function 

g(c)=d2 ~ + ~ ] + ~ - 2 d 4  

and the constant 

Co = 0(0) 2 + dla(O) 2 - 2d3a(O). 
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Then, we choose c~ > 0 with cl _>_ Co and set 

d3 ) .  

Hence, by definition, v = -~1 + 7 + solves: 

- d 2 v  2 + 2d4v = 0 (15) 

Since (15) has only one positive solution, we have 

d-7 + Z-, + a, I = a-7 + ~ +~= 

Obviously, (a(0),  o(0)) E G. 

If o(0) < 0 we introduce the function 

g(c) = dl + ~ + - 2d3 

and the constant 

Co = 0(0) 2 + d2a(0)  2 -- 2d40t(0). 

Then we choose a ~z > 0 such that ~'2 _>_ Co and g(~2 ) > 0 and we set" 

_ d4 2 C'~2 1[2) . 

As above it is easy to see that with c2 andS2 the conditions of  Lemma 3 are satisfied. 

Now, we are able to estimate the mean distance 

rM(t) = f 3  rpf(t ,x)dx 

of the electrons from the x3 -axis. Since 

rM(t) _<_ Ifo IL,(r ) + fRy(t,Oa,v)Vo(X,V)aXdV.r 
we get from foregoing lemmas that in the mean the particle orbit is contained in a column of  

infinite axial extent. 
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Theorem 3 

Under  the assumptions o f  Lemma 5 the fol lowing holds:  

rM(t)-<-If°lL,(r)+-d-( + ~ +-d~ ' 

if  fv sfo(x,v)dxdv >__O, and 

m c2),,2 
I'M(t) _~_ ifo [L1 ( r )  + ~-1 + ~-1 + ~1 ' 

i f  ; sfo(x,v)dxdv < O. 
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